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In this paper we analyze two sets of cate- 
gorical data with the following objectives: (1) 

to show that fitting non- hierarchical models is 

very feasible and that such models may give ex- 
tremely good fit, when hierarchical models may 
not, and (2) to assess the relative utility of 
maximum likelihood (ML) and weighted least - 
squares (WLS) estimation techniques in light of 
data structure and available computer programs. 
We assume familiarity with the basic hierarchic- 
al log- linear technique as presented, for ex- 
ample, in Goodman [5, 6, 7]. 

Illustration 1: Self- esteem data 

The data in Table 1, taken from Rosenberg 
[11], show proportions of persons with "high" 
self - esteem by religion (three categories) and 
father's education (six categories). We take 
self- esteem to be a dichotomous variable ( 

or not "high ") and treat it as the dependent var- 
iable. When using the ML hierarchical method 
[6] in this data situation, one typically starts 
by testing whether father's education and relig- 
ion interact in their effects on self -esteem, 
and, if that three -way interaction is absent, 
the next step would be to inquire whether the 
main effects of father's education and religion 
are significant. The first step, then,is to fit 
the three two -way marginals, which is equivalent 
to "fitting" the hypothesis of no three -way in- 
teraction [3). In this case, such a model fits 
the data very poorly (x2 = 37.66, 10 df, p < 

.001), and the investigator would infer that re- 
ligion and father's education do indeed interact 
in their effects on self -esteem. At this point 
the typical log- linear analysis would stop, for 
the only model among the hierarchical ones that 
would give a better fit would be the so- called 
"saturated model," which, because it uses all 
the degrees of freedom available, yields no data 
reduction whatsoever, enabling the analyst to do 
no more than describe the observed frequencies 
in the table. 

We shall now briefly describe how one may 
try to identify a parsimonious non -hierarchical 
model that fits the data extremely well. We 
first fit the saturated model, using a program 
called NONMET which is a WLS routine [8]. (For 

documentation, write to the Institute for Re- 
search in Social Science, University of North 
Carolina, Chapel Hill.) In order to fit any 
model using the NONMET program, we must first 
specify the design matrix using the so- called 
"effect coding" [10, pp. 121 -128]. Given below 
are the first eight columns of the design matrix. 
These columns represent the "general mean" and 
the "main effects" of religion (two components, 
R1 and R2) and father's education (five compo- 

nents, E1, ..., E5). The ten remaining columns 
in the design matrix (not shown) correspond to 
the interaction effects. They can be derived 
by multiplying corresponding elements of one col- 
umn (R1 or R2) for religion and one (E1, E2, E3, 
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Row Columns of Design Matrix 
(1) (2) (3) (4) (5) (6) (7) (8) 

RI R2 El E2 E3 E4 E5 

C:1 0 
2 1 1 0 0 1 0 0 0 

3 1 1 0 0 0 

4 1 1 0 0 0 

5 1 1 0 0 0 0 
6 1 1 -1 -1 -1 -1. -1 

J:1 1 0 

2 1 1 0 1 0 0 

3 1 

4 1 0 1 0 0 0 1 0 

5 1 0 1 0 0 1 

6 1 0 1 -1 -1 -1 -1 -1 

P:1 -1 -1 1 0 0 0 0 
2 1 -1 -1 0 1 0 0 0 

3 1 -1 -1 1 0 0 

4 1 -1 -1 0 1 0 

1 -1 -1 0 0 0 0 1 

6 1 -1 -1 -1 -1 -1 -1 -1 

E4, or E5) for father's education. This 18 by 18 
design matrix when used in NONMET yields esti- 
mates of the parameters of the saturated model. 

Note that the WLS routine programmed in NON - 
MET predicts the proportion of persons with "high" 
self- esteem or the logarithm or the logit there- 
of. Here we confine ourselves to the logit form. 
(Logit is defined as the natural logarithm of 
p /(1 -p), where is the proportion of cases with 
"high" self -esteem.) 

With the ML model we are not predicting the 
logit of the dependent proportion, but rather the 
logarithm of the frequency, or the logarithm of 
the proportion of the total number of cases in 
each cell of the three -way table of religion -by- 
father's education -by -self- esteem [1, 5, 6]. 

(Let us call the ML model the log- frequency 
model.) Since, with this model we predict the 
cell frequencies rather than the logits, we are 
now predicting 36 values. Therefore, the design 
matrix needed to predict the observed frequencies 
in the three -way table will have 36 rows, one 

corresponding to each cell in the table. The 
matrix for the saturated log- frequency model will 
also have a total of 36 columns, for we must now 
estimate parameters representing the general mean 
(1), main effects (self- esteem, 1; religion, 2; 

father's education, S), the two -way effects (self - 
esteem and religion, 2; self- esteem and father's 
education, 5; religion and father's education, 
10) and the three -way effects (10). It is easy 
to demonstrate that the parameters involving self - 
esteem for the saturated log- frequency model are 
exactly half of the corresponding parameters of 
the logit model [6]. 

For the saturated model, the ML estimates 
can be easily obtained using a program such as 
ECTA. We can also use a more general ML estima- 
tion program, such as MAXLIK [9], and such a pro- 
gram must be used to obtain estimates for any 



model other than the hierarchical variety de- 
scribed by Goodman. 

The WLS estimates and their standard errors 
for the saturated logit model described above 
are shown below: 

R1: -.1108(.0636) 
R2: .3334(.0817) 
E1: -.1900(.1200) 
E2: -.0907(.0841) 
E3: -.2569(.0815) 
E4: .0592(.1115) 
E5: .2403(.1169) 

R1E1: .1007(.1375) 
R1E2: .0202(.1042) 

R1E3: .3418(.1016) 
R1E4: -.0132(.1474) 

R1E5: -.3531(.1556) 
R2E1: -.1655(.2164) 
R2E2: -.3214(.1609) 
R2E3: -.0366(.1395) 
R2E4: -.0348(.1799) 

R2E5: -.4508(.1975) 

(It can be easily shown that for the saturated 
model the WLS estimates and the ML estimates are 
identical.) 

Each estimate shown above can be used to 
test the significance of the corresponding para- 
meter by calculating the statistic (estimate/ 
standard error)2, which is distributed asymptoti- 
cally as chi -square with one degree of freedom. 
This procedure yields the following parameters as 

"significant ": R1, R2, E1, E3, E5, R1E3, R1E5, 
R2E2, and R2E5. Fitting a model containing only 
these parameters and the grand mean may provide 

a parsimonious representation of the data in 
question. Such a. model would leave 8 degrees of 
freedom, since it fits only 10 of the 18 para- 
meters of the saturated model. However, in this 
case we can further reduce the number of para- 
meters that need to be estimated by fitting (E1 - 

E5) instead of the pair E1 and E5, and (R1 -R2)E5 

instead of the pair R1E5 and R2E5. With this 
further reduction, we estimate a total of 8 para- 
meters, leaving 10 degrees of freedom. The de- 

sign matrix for this last model is shown below: 

Row Columns of Design Matrix 

(1) (2) (3) (4) (5) (6) (7) (8) 

X R1 R2 E1 -E5 E3 (R1-R2)E5 R1E3 R2E2 

C:1 1 1 1 o 
2 1 1 0 o 
3 1 1 1 o 1 

4 1 1 0 0 o 
1 1 -1 O O 

6 1 1 -1 -1 -1 

J:1 1 1 1 O o 
2 1 0 1 0 o O 1 

3 1 1 1 o 
4 1 0 1 0 o 
5 1 1 -1 -1 O 

6 1 1 -1 -1 

P:1 1 -1 -1 1 O O 

2 1 -1 -1 0 o -1 

3 -1 -1 1 o -1 

4 1 -1 -1 o O O 

5 1 -1 -1 -1 o 
6 1 -1 -1 O -1 o 1 

The WLS estimates of the parameters of this 
model and their standard errors are: 

R1: -.1112(.0564) (R1- R2)E5: -.3052(.1325) 
R2: .3344(.0743) R1E3: .3606(.0709) 
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El- E5: -.1435(.0692) R2E2: -.2839(.0933) 
E3: .2565(.0649) 

The corresponding ML estimates obtained by using 
the MAXLIK program are: 

R1: -.1124 (R1- R2)E5: -.3096 
R2: .3370 

E5: -.1444 
RIES: .3604 

E3: -.2572 R2E2: -.2846 

The goodness of fit chi - square for the WLS proced- 
ure is 3.15 (10df, p. = .978) and that for the ML 
procedure is 3.18 (lOdf, p = .977). 

Given the near identity of the estimates ob- 
tained using the two techniques, the analyst 
would be advised to employ the technique that is 
easiest to use, and less expensive. Since the 
ML programs such as MAXLIK are quite costly and 
require the input of initial estimates, which 
must be obtained from prior calculations, it 
seems clear that for data where we can specify 
one of the variables as dependent and where that 
variable is dichotomous, it is preferable to use 
the WLS technique. It deserves to be emphasized 
that the analysis procedure just described makes 
sense only if all the parameters can be given sub- 
stantive interpretations. (The theoretical sig- 
nificance of these particular parameters, of 
course, will have to be found on the basis of non - 
statistical considerations that are beyond the 
scope of this paper.) We wish merely to illus- 
trate that these eight parameters suffice to de- 
scribe virtually all of the variation in self - 
esteem in the given data set. 

Illustration 2: Openness to Change 

The second illustration uses data in which 

the dependent variable is a polychotomy. The 
data are from a survey reported in Duncan (2]. 

In that survey, respondents were asked about 
their attitudes toward "making changes in the way 
our country is run" (2, pp. 177 -181]. Four re- 

sponse categories were used: R1: "We should 

rarely, if ever, make changes ", R2: "We should 
be very cautious in making changes ", R3: "We 

should feel free to make changes ", R4: "We must 
constantly make changes." Suppose we are inter- 
ested in assessing the effect of the year (Y) of 

the survey (1956 or 1971) and the respondent's 
political party identification (P1: Republican, 
P2: Democrat, or P3: Independent). 

Analyzing these data using the WLS technique 
to "search" for a parsimonious model is not as 

straightforward as in the previous illustration, 
because the dependent variable is now polychotom- 
ous. We start by viewing the response-by- party- 

by -year distribution as a multinomial (with 24 

classes) and let the multinomial proportion in 

each cell take the place of the binomial propor- 
tion in Illustration 1, treating log p as the 
quantity that is predicted. It is important to 

note that the procedure is statistically incor- 
rect and may produce bias in our estimates of the 

variance -covariance matrix. Nevertheless, as we 
demonstrate below, this procedure is less prob- 



lematic than it might appear at first blush. 
(We employ the WLS procedure only for a prelimin- 
ary analysis, which we follow up with the ML pro- 
cedure. In the present case the ML estimates 
turn out to be substantially similar to the WLS 
estimates.) 

Our strategy involves first fitting the sat- 
urated model to the data in Table 2. By omitting 
non -significant effects, specifying "difference" 
effects for pairs of related effects, and taking 
other similar steps, we obtain, after a few pre- 
liminary runs using NONMET, a parsimonious model 
that seems to fit the data extremely well. This 
model is then fitted using the MAXLIK program. 
The results are reported in Table 3. 

In the analysis of these same data, Duncan 
[2] uses standard hierarchical ML procedures to 
arrive at a parsimonious and good -fitting model, 
by treating each polychotomous variable with 
categories as a set of dichotomous variables, 
in each case contrasting a given category with 
the remaining categories. He terms these 
dichotomous variables "formal" variables. 

Duncan begins the analysis of these data by 
fitting a baseline model which posits independ- 
ence between response and the joint variable 
year -by- party. He then proceeds to fit several 
models one at a time, each of which includes the 
parameters of the baseline model as well as one 
additional parameter representing the effect on 
one of the response categories of one of the in- 
dependent variable categories. Thus, he shows 
twelve effects for party and response and four 
effects for year and response. The statistical 
significance of each additional parameter is as- 
certained by comparing the difference in chi - 
square of each model and the baseline model. 

Each of the twelve three -way interactions are 
also tested for significance one at a time, by 
comparing a model that included it with a model 
that excluded it. In this way, Duncan arrives 
at what we will for convenience term his "best - 
fitting" model, i.e., his Model (15), with 15 
parameters, nine degrees of freedom, and a chi - 
square value of 3.5, with a probability exceed- 
ing .9. 

Duncan's "best- fitting" model can be spec- 
ified in a design matrix format: First think of 
each row of the matrix as being defined by the 
eight dichotomous formal variables, rather than 
by the underlying three variables. Then, for 
each of the formal variable effects, one can 
specify a column with, a 1 for each cell corre- 
sponding to the category of the formal variable, 
and a -1 for all other cells. These are the so- 
called elementary column specifications shown in 
columns (1) through (8) in Table 4. These elem- 
entary columns can in turn be used to specify 
any of the joint (interaction) effects in the 
model. Thus, for example, column (9) shows the 

vector corresponding to the parameter R4Y, which 
is obtained by multiplying corresponding elements 
in elementary columns (4) and (8). Columns (10) 

and (11) of Table 4 show two other interaction 
vectors that are specified according to the form- 

al variable approach. The formal approach is 
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used only to define the interaction terms in the 
model --terms involving the multiplication of two 
or more elementary vectors. It is important to 
note that all formal variable interaction terms 
involving a given polychotomous variable cannot 
be simultaneously included in the design matrix, 
because any one column for the I- category poly - 
chotomous variable would then be linearly depend- 
ent on the other g columns. Likewise, we can- 
not use the vectors in the first eight columns of 
Table 4 to specify the main effects. Because of 
this, we resort to the more usual column specifi- 
cation for fitting main effects and specify all 
interaction effects in terms of formal variables 
in the manner described above and shown in Table 
4. 

Model (1) in Table 5 corresponds to Duncan's 
best -fitting model. We arrive at the design 
matrix specification for this model by specifying 
baseline model parameters according to the usual 
column design, with the additional interaction 
effects specified according to the formal variable 
design. Note that this design matrix. specifica- 
tion yields results identical to Duncan's best - 
fitting model, and it allows for estimation of 
parameters without resorting to procedures for 
handling structural zeros. 

The second model in Table 5 is a non -hier- 
archical model fitted to the same data (Table. 2). 
Once a matrix approach is adopted, there is no 
need for the investigator to adhere only to hier- 
archical models. Note that the terms in model 
(2) are quite similar to those in model (1). 

Model (2) differs from model (1) in that the form- 
er excludes the effects PI and P2Y and includes 
the effects RiP2Y and R3P2Y. This substitution 
of two parameters leaves unchanged the degrees of 
freedom but improves the fit of the model. In 

addition, the substantive inferences made on the 
basis of model (2) would differ from those made 
with model (1), corresponding to the two differ- 
ent parameters in the models. 

It is interesting to note that not only do 
models (1) and (2) in Table 5 allow us to make 
slightly different inferences about the relation- 
ships in the data in Table 2, but also that both 
of these models differ substantially in structure 
from the parsimonious and slightly better fitting 
model in Table 3. Neither the different paramet- 
erization of the design matrix in our approach 
nor the introduction of the formal variable for- 
mat accounts for any of the differences in struc- 
ture between the model in Table 3 and the models 
in Table 5, since if the design matrix for the 
model in Table 3 were recast in terms of the form- 
al variables there would be no change in the par- 
ameter estimates or goodness -of -fit statistic. 
We may remind the reader of Goodman's caution [4, 
p. 48] that different selection procedures may 
lead to different models, all of which concisely 
fit a given set of data. Another analyst may ob- 
tain yet another model that fits these data well. 

Nevertheless, we wish to underscore the cen- 
tral point that any analyst is well- advised to 

consider non -hierarchical models as well as those 
that are hierarchical. Duncan's analysis of 



these data was restricted to hierarchical models, 
and was somewhat cumbersome in requiring that 
many models be fitted in order to arrive at one 
that was reasonably parsimonious. 

Our initial analysis of the data in Table 2 
yielded in straightforward fashion a very parsi- 
monious model that was non -hierarchical. Reanal- 
ysis of the data using the formal variable ap- 

proach with a design matrix allowed us to duplic- 
ate Duncan's finding, and then go on to fit a 
non -hierarchical model that describes the data 
somewhat better than does Duncan's model. 

General Recommendations 

(1) If the dependent variable is dichotom- 
ous, use a WLS program such as NONMET, rather 
than a hierarchical ML program such as ECTA. This 

allows the analyst to use his or her imagination 
in finding models that are theoretically appro- 
priate, parsimonious, and that fit the data very 
well. Although such models may occasionally be 
hierarchical, in which case ECTA may be useful, a 

WLS program such as NONMET can be used to fit 
all the models fitted by ECTA and more. A pro- 
gram such as MAXLIK will then allow the analyst 
to obtain ML estimates, once the appropriate 
model has been found with the WLS technique. 

(2) If the dependent variable is polychot- 
omous, first apply a WLS program (e.g., NONMET) 

to the logarithm of cell frequencies to find the 

most suitable model as in the second illustra- 

tion. Since the NONMET program in this case is 

statistically less attractive because it employs 

the wrong variance -covariance matrix, use a pro- 

gram such as MAXLIK to obtain ML estimates for 
the model. 

(3) For a logit model, in which the depend- 
ent variable is dichotomous, it would be enough 
to use the NONMET program alone, without finding 
ML estimates, because both procedures yield vir- 
tually identical results. 

(4) For a set of data with a polychotom- 

ous dependent variable, it may be the case that 

the use of the NONMET program in the manner we 

suggest above, although statistically not quite 
attractive, produces acceptable results for most 
analyses. For our example, the WLS estimate did 

not depart significantly from the ML estimates. 
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TABLE I 

PROPORTION WITH HIGH SELF ESTEEM, BY 
RELIGIOUS BACKGROUND AND 

FATHER'S EDUCATION 

Religion* Father's Education 
Eighth Some H.S. Some Col. Post- 
grade high grad. col. grad. grad. 

or less schl. 

C: .681 .685 .717 .709 .675 .729 
(n) (360) (482) (541) (141) (114) (70) 

J: .718 .706 .745 .788 .879 .827 

(n) (39) (126) (137) (85) (99) (75) 

P: .648 .720 .525 .699 .706 .738 

(n) (193) (325) (406) (156) (279) (122) 

*C: Catholic; J: Jewish; P: Protestant 



TABLE 2 TABLE 3 

PERCENTAGE DISTRIBUTIONS OF RESPONSES TO ESTIMATES FOR PARSIMONIOUS MODEL 
"CHANGE" QUESTION, BY YEAR AND PARTY FITTED TO DATA IN TABLE 6 

Year 
Response 

Party 
Parameter 

WLS 
Estimate 

ML 
Estimate Rep. Dem, Ind. 

(P1) (P2) (P3) 
RI -2.2824 -2.2958 

1956 (Y1) R2 1.1862 1.1910 
R3 .8513 .8540 

R1 2.0 2.1 1.1 
R2 47.0 49.0 51.1 P1 - .2710 - .2728 

R3 37.0 38.1 31.1 P2 .7779 .7816 
R4 14.0 10:9 16.7 

Y .0960 .0961 
Total 100.0 100.0 100.0 

Ply - .3009 - .3022 
(n) (200) (431) (90) P2Y .0521 .0510 

1971 (Y2) R1P2 .2944 .3022 
R1Y - .3220 - .3196 

R1 1.3 2.2 0.4 R1P2Y .2901 .2837 
R2 53.4 42.4 '36.0 

R3 25.8 32.6 33.0 R2(P1-P2) .0847 .0875 

R4 19.5 22.8 30.6 R2(P1-P2)Y .1326 .1315 

Total 100.0 100.0 100,0 R3P2Y - .1529 - .1519 

(n) (159) (509) (242) Chi-square 

value 2.5720 1.6214 
df 9 9 

p .9789 .9774 

TABLE 4 

COLUMN SPECIFICATION FOR DESIGN MATRIX 
CORRESPONDING TO FORMAL VARIABLE APPROACH 

R1 R2 R3 R4 P1 P2 P3 Y 

Elementary 
Column Specifications 

Interaction 
Columns 

(1) 

R1 
) (3) 4) (5) (6) (7) (2) 

R2 R3 R4 P1 P2 P3 
(8) 

Y 
(9) (10) (11) 
R4Y RiP3 R2P1Y 

1 2 2 2 1 2 2 1 1 -1 -1 -1 1 -1 -1 1 -1 -1 -1 

1 2 2 2 1 2 2 2 1 -1 -1 -1 1 -1 -i -1 1 -1 1 

1 2 2 2 2 1 2 1 1 -1 -1 -1 -1 1 -1 1 -1 -1 1 

1 2 2 2 2 1 2 2 1. -1 -1 -1 -1 1 -1 -1 1 -1 -1 

1 2 2 2 2 1 1 1 -1 -1 -1 -1 -1 1 1 -1 1 1 

1 2 2 2 2 2 1 2 1 -1 -1 -1 -1 -1 1 -1 1 1 -1 

2 1 2 2 1 2 2 1 -1 1 -1 -1 1 -1 -1 1 -1 1 1 

2 1 2 2 1 2 2 2 -1 1 -1 -1 1 -1 -1 1 1 -1 

2 1 2 2 2 1 2 1 -1 1 -1 -1 -1 1 -1 1 -1 1 -1 

2 1 2 2 2 1 2 2 -1 1 -1 -1 -1 1 -1 -1 1 1 1 

2 1 2 2 2 2 1 1 -1 1-1 -1 -1 -1 1 1 -1 -1 -1 

1 2 2 2 2 1 2 -1 1 -1 -1 -1 -1 1 -1 1 -1 1 

2 2 1 2 1 2 2 1 -1 1 -1 1 -1 -1 1 -1 1 -1 

2 2 1 2 1 2 2 2 -1 -1 1 -1 1 -1 -i -1 1 1 1 

2 2 1 2 2 1 2 1 -1 -1 1 -1 -1 1 -1 1 -1 1 1 

2 2 1 2 2 1 2 2 -1 -3. 1 -1 -1 1 -1 -1 1 -1 

2 2 1 2 2 2 1 1 -1 -1 1 -1 -1 -1 1 1 -1 -1 1 

2 2 1 2 2 2 1 2 -1 -1 1 -1 -1 -1 1 -1 1 -1 -1 

2 2 2 1 1 2 2 1 -1 -1 -1 1 1 -1 -1 1 1 1 -i 

2 2 2 1 1 2 2 2 -1 -1 -1 1 1-1 -1 -1 -1 1 1 

2 2 2 1 2 1 2 1 -1 -1 -1 1 -1 1 -1 1 1 1 1 

2 2 2 1 2 1 2 2 -1 -1 -1 1-1 1 -1 -1 -1 1 -1 

2 2 2 1 2 2 1 1 -1 -1 -1 1 -1 -1 1 1 -1 1 

2 2 2 1 2 2 1 2 -1 -1 -1 1 -1 -1 1 -1 -1 -1 -1 
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TABLE 5 

ML ESTIMATES OF PARAMETERS AND GOODNESS OF 
FIT CHI SQUARES OF TWO PARSIMONIOUS 
MODELS FOR DATA IN TABLE 2: MODELS 

SPECIFIED USING FORMAL 
VARIABLE APPROACH 

Parameter Model 1 Model 2 

R1 -2.4839 -2.7211 
R2 1.2535 1.3323 
R3 .8991 .9763 

P1 - .1159 a 

P2 .8443 .9437 

Y .2729 .2534 

PiY - .2560 - .2873 

- .0654 a 

R2Y .0501 .0529 
R4Y .1909 .1862 

RiP3 - .2706 - .4309 

R2P1 .0471 .0443 

.0929 .0960 

R1P2Y .0595 

R2P1Y .0737 .0891 

R3P2Y .0350 

Chi-square 

value 3.477 2.643 
df 9 9 

p .942 .977 

a Parameter excluded from the model 
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